Publications

It ain’t happened ’til it’s published!

Peer-reviewed publications

33. Cationic Tetrylene-Iron(0) Complexes: Access Points for Cooperative, Reversible Bond Activation and Open-Shell Iron(-I) Ferrato-Tetrylenes
P. M. Keil, A. Soyemi, K. Weisser, T. Szilvási, C. Limberg, and T. J. Hadlington*, Angew. Chemie., 2023, DOI: 10.1002/anie.202218141

32. Protonation of Hydrido-Tetrylenes: H2 Elimination vs. Tetrylium Cation Formation
P. M. Keil, and T. J. Hadlington*, ZAAC, 2022, 648, e202200141

Highlighted on the Front Cover of the issue

Published on the occasion of the 60th birthday of Prof. Cameron Jones

31. Accessing cationic tetrylene-nickel(0) systems featuring donoracceptor E-Ni triple bonds (E = Ge, Sn)
P. Keil, and T. J. Hadlington*, Chem. Commun., 2022, 58, 3011-3014.

30. Accessing the Main-Group Metal Formyl Scaffold through CO-Activation in Beryllium Hydride Complexes
T. J. Hadlington*, and T. Szilvasi, Nature Comm., 2022, 13, Article number: 461.

Highlited in Nachtrichten aus der Chemie: Nachr. Chem., 2022, 70, 3, 38-41.

29. Geometrically Constrained Cationic Low-Coordinate Tetrylenes: Highly Lewis Acidic σ-Donor Ligands in Catalytic Systems
P. Keil, and T. J. Hadlington*, Angew. Chem. Int. Ed., 2022, 134, e202114143.

Highlighted in Nachrichten aus der Chemie: Nachr. Chem., 2022, 70, 1, 48-51.

28. Reversible metathesis of ammonia in an acyclic Germylene-Ni0 complex
P. M. Keil, T. Szilvási, and T. J. Hadlington*, Chem. Sci., 2021, 12, 5582-5590.

Included in the ‘Most popular 2021 main group, inorganic and organometallic chemistry articles’ collection, highlighting the top 30 most read articles across these categories in 2021.

Pre-independance

27. Synthesis and Coordination Ability of a Donor-Stabilised Bis-Phosphinidene
T. J. Hadlington*, A. Kostenko, and M. Driess, Chem. Eur. J., 2021, 27, 2476 –2482.

26. Cycloaddition Chemistry of a Silylene-Nickel Complex toward Organic π-Systems: From Reversibility to C-H Activation
T. J. Hadlington*, A. Kostenko, and M. Driess, Chem. Eur. J., 2020, 26, 1958 –1962.

25. Versatile Tautomerization of EH2-Substituted Silylenes (E = N, P, As) in the Coordination Sphere of Nickel
T. J. Hadlington*, T. Szilvási, and M. Driess, J. Am. Chem. Soc., 2019, 141, 3304 – 3314.

24. From As-Zincoarsasilene (LZn-As=SiL’) to Arsaethynolate (As≡C-O) and Arsaketenylide (O=C=As) Complexes
E. Ballestero-Martínez, T. Szilvási, T. J. Hadlington, and M. Driess, Angew. Chem. Int. Ed., 2019, 58, 3382 – 3386.

23. Silicon-mediated selective homo- and hetero-coupling of carbon monoxide
Y. Wang,† A. Kostenko,† T. J. Hadlington,† M. Lücke, S. Yao, and M. Driess, J. Am. Chem. Soc., 2019, 141, 626 – 634.

22. Synthesis and Reactivity Studies of Amido‐Substituted Germanium(I)/Tin(I) Dimers and Cluster
J. A. Kelly, M. Jückel, T. J. Hadlington, I. Fernández, G. Frenking, and C. Jones, Chem. Eur. J., 2019, 25, 2773 – 2785.

21. Metal nitrene-like reactivity of a Si=N bond towards CO2
T. J. Hadlington, T. Szilvasi, and M. Driess, Chem. Commun., 2018, 54, 9352 – 9355.

20. From zinco(II) arsaketenes to silylene-stabilised zinco arsinidene complexes
E. Ballestero-Martinez, T. J. Hadlington, T. Szilvasi, S. Yao, and M. Driess, Chem. Commun., 2018, 54, 6124 – 6127.

Highlighted on the inside cover of its Chemical Communcations issue.

19. Low-valent group 14 element hydride chemistry: towards catalysis
T. J. Hadlington*, M. Driess, and C. Jones, Chem. Soc. Rev., 2018, 47, 4176 – 4197.
*Denotes corresponding authorship.

18. Striking transformations of the hydroborylene ligand in a HB:→NiII complex with isocyanides and CO
T. J. Hadlington, T. Szilvasi, and M. Driess, Chem. Sci., 2018, 9, 2595–2600.

17. Synthesis of a Metallo‐Iminosilane via a Silanone–Metal π‐Complex
T. J. Hadlington, T. Szilvasi, and M. Driess, Angew. Chem. Int. Ed., 2017, 56, 14282 –14286.

16. Silylene–Nickel Promoted Cleavage of B−O Bonds: From Catechol Borane to the Hydroborylene Ligand
T. J. Hadlington, T. Szilvasi, and M. Driess, Angew. Chem. Int. Ed., 2017, 56, 7470 –7474.

Highlighted on the back cover of its Angewandte Chemie issue.

15. Efficient Reduction of Carbon Dioxide to Methanol Equivalents Catalyzed by Two-Coordinate Amido–Germanium(II) and −Tin(II) Hydride Complexes
T. J. Hadlington, C. E. Kefalidis, L. Maron, and C. Jones, ACS Catal., 2017, 7, 1853–1859.

14. Stabilization of a Two-Coordinate, Acyclic Diaminosilylene (ADASi): Completion of the Series of Isolable Diaminotetrylenes, :E(NR2)2 (E = Group 14 Element)
T. J. Hadlington, J. A. B. Abdalla, R. Tirfoin, S. Aldridge, and C. Jones, Chem. Commun., 2016, 52, 1717-1720.

13. Beyond Dehydrocoupling: Group 2 Mediated Boron–Nitrogen Desilacoupling
D. J. Liptrot, M. Arrowsmith, A. L. Colebatch, T. J. Hadlington, M. S. Hill, G. Kociok-Köhn, and M. F. Mahon, Angew. Chem. 2015, 54, 15280-15283.

12. Two-Coordinate Group 14 Element(II) Hydrides as Reagents for the Facile, and Sometimes Reversible, Hydrogermylation/Hydrostannylation of Unactivated Alkenes and Alkynes
T. J. Hadlington, M. Hermann, G. Frenking, and C. Jones, Chem. Sci. 2015, 6, 7249-7257.

11. Reactivity of Amido-Digermynes, LGeGeL (L = Bulky Amide), toward Olefins and Related Molecules: Facile Reduction, C−H Activation, and Reversible Cycloaddition of Unsaturated Substrates
T. J. Hadlington, J. Li, M. Hermann, A. Davey, G. Frenking, and C. Jones, Organometallics, 2015, 34, 3175–3185.

10. Two-Coordinate Hydrido-Germylenes
T. J. Hadlington, B. Schwarze, E. I. Izgorodina, and C. Jones, Chem. Commun., 2015, 51, 6854–6857.

9. Low Coordinate Germanium(II) and Tin(II) Hydride Complexes: Efficient Catalysts for the Hydroboration of Carbonyl Compounds
T. J. Hadlington, M. Hermann, G. Frenking, and C. Jones, J. Am. Chem. Soc., 2014, 136, 3028−3031.

8. A Singly Bonded Amido-Distannyne: H2 Activation and Isocyanide Coordination
T. J. Hadlington, and C. Jones, Chem. Commun. 2014, 50, 2321–2323.

7. Synthesis and Characterization of Extremely Bulky Amido-Germanium(II) Halide Complexes
T. J. Hadlington, J. Li, and C. Jones, Can. J. Chem., 2014, 92, 427–433.

6. Activation of H2 by a Multiply Bonded Amido–Digermyne: Evidence for the Formation of a Hydrido–Germylene
T. J. Hadlington, M. Hermann, J. Li, G. Frenking, and C. Jones, Angew. Chem. 2013, 125, 10389 –10393.

Highlighted as a Hot Paper.

5. Utilizing Steric Bulk to Stabilize Molybdenum Aminogermylyne and Aminogermylene Complexes
J. Hicks, T. J. Hadlington, C. Schenk, J. Li, and C. Jones, Organometallics, 2013, 32, 323−329.

4. Extremely Bulky Amido and Amidinato Complexes of Boron and Aluminium Halides: Synthesis and Reduction Studies
E. W.Y. Wong, D. Dange, L. Fohlmeister, T. J. Hadlington, and C. Jones, Aust. J. Chem., 2013, 66, 1144–1154.

3. Synthesis and Crystal Structures of Two Bulky Bis(Amido)Germylenes
E. W. Y. Wong, T. J. Hadlington, and C. Jones, Main Group Met. Chem., 2013, 36, 133–136.

2. Magnesium-Catalysed Hydroboration of Aldehydes and Ketones
M. Arrowsmith, T. J. Hadlington, M. S. Hill, and G. Kociok-Köhn, Chem. Commun., 2012, 48, 4567–4569.

1. Magnesium-Catalyzed Hydroboration of Pyridines
M. Arrowsmith, M. S. Hill, T. Hadlington, G. Kociok-Köhn, and C. Weetman, Organometallics, 2011, 30, 5556−5559.

Books and book chapters

3. Compounds with bonds between silicon and transition metals
T. J. Hadlington; In Comprehensive Organometallic Chemistry IV; Elsevier Ltd.; 2021.

2. Tin and lead in organic synthesis
T. J. Hadlington; In Comprehensive Organometallic Chemsitry IV; Elsevier Ltd.; 2021.

1. On the catalytic efficacy of low-oxidation state group 14 complexes
T. J. Hadlington, Springer, 2017.